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The purpose of this note is to construct a local solution that eliminates a residual 
velocity discontinuity in the inviscid portion of a solution obtained in a recent paper 
by Goldstein, Leib & Cowley (1992). This result is of importance because it shows 
that the solution obtained in that paper is entirely non-singular outside the viscous 
wall boundary layer and that any singularity in the problem will have to arise in the 
usual way through a breakdown in the viscous boundary layer. 

1. Introduction 
In a recent paper, Goldstein, Leib & Cowley (1992, hereafter referred to as GLC), 

analysed the effect of small free-stream non-uniformity on the flow over a relatively 
thin flat plate. They showed how small (but steady) spanwise variations in the 
incident streamwise velocity field ultimately cause the initially thin viscous boundary 
layer flow over the plate to separate. Inviscid vortex stretching in the main stream 
causes the separation to develop relatively close to the leading edge and a fairly 
complete analytical description of the separation structure was then obtained. This 
separation, which appears to be of the boundary-layer collision type (Stewartson, 
Cebeci & Chang 1980 ; Stewartson & Simpson 1982), occurs on a symmetry plane with 
the wall shear stress vanishing at  the separation point. 

It was assumed that the characteristic dimension of the rounded leading edge was 
of the order of the spanwise lengthscale, say A ,  of the upstream disturbance field, and 
that the Reynolds number based on A, say R,, was large. The inviscid flow in the 
vicinity of the leading edge was determined from linear ‘rapid distortion’ theory 
(Hunt & Carruthers 1990; Goldstein 1978). The inviscid crossflow effects produced 
only a linear perturbation to the boundary-layer flow in the vicinity of the leading 
edge, but they produced order-one changes in the boundary-layer profiles at  large 
distances downstream. 

The linear rapid distortion theory solution broke down at large streamwise 
distances with the breakdown moving further upstream as the surface of the body is 
approached. A new nonlinear solution was then obtained in order to describe the 
external inviscid flow in the physically interesting region where order-one changes 
occur in the boundary-layer profiles. The thickness of this nonlinear region was small 
compared to its streamwise dimension but large compared to the boundary-layer 
thickness. It served as kind of a ‘blending layer’ that connects the boundary-layer 
solution to the linear rapid distortion theory solution which applies a t  an order-one 
(on the scale A )  distance from the wall. This region, in which the horizontal pressure 
gradients are negligible, might be characterized as a nonlinear vorticity layer. 
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The blending layer (or nonlinear vorticity layer) flow is governed by the inviscid 
Burgers’ equation (sometimes called the kinematic wave equation) and eventually 
develops an infinite singularity in the vertical velocity at a certain spanwise location 
at  a finite downstream position owing to the well-known wave steepening effects 
associated with the solution to that equation. This singularity lies along a curved line 
(or a periodic array of curved lines) with the flow being discontinuous across the 
planes extending downstream of these lines. (This plane turned out to be a symmetry 
plane in the specific numerical example worked out in GLC.) A new local solution was 
worked out in order to eliminate the singularity in the singularity line region. This 
solution was still inviscid and did not bring in the horizontal pressure gradients. 
Moreover, like the blending-layer solution itself, it turned out to be discontinuous 
across the symmetry plane. The purpose of this note is to show that another local 
solution can be constructed to completely eliminate the velocity discontinuity across 
the symmetry plane. This solution is still inviscid but now brings in the horizontal 
pressure gradients. This result shows that the GLC solution is completely non- 
singular outside the boundary layer and therefore any singularity in the problem 
must arise through a breakdown of the viscous boundary layer. 

In $ 2  we review the formulation of GLC and set out the notation used. The local 
asymptotic solution that eliminates the residual singularity in the inviscid solution 
of GLC is constructed in $3. The note concludes with a discussion of the results in $4. 

2. Review of formulation and the inviscid solutions of GLC 
As in GLC we are concerned with the incompressible flow over a semi-infinite flat 

plate of thickness h* = O(h) .  The upstream flow field consists of a uniform stream of 
velocity Urn and a small, O(E) ,  perturbation, say dJ, u,(x), to the streamwise velocity 
that depends only on the dimensionless spanwise variable x .  All lengths are 
normalized with A and all velocities with U,. The pressure p is normalized with puZ, 
where p is the (constant) density. The streamwise coordinate x has its origin at  the 
leading edge of the plate while that of the transverse coordinate y coincides with 
the flat surface of the plate far downstream. As in GLC the scaling is chosen so that 
the viscous effects are confined to a surface boundary layer which is predominantly 
two-dimensional near the forward stagnation point. This requires that the Reynolds 
number, R, = Urn hlv, where v is the kinematic viscosity, satisfy the inequality 

lnR, < l / e  4 R,. (2.1) 
The overall flow configuration is shown in figure 1 which is taken from GLC. 

In this paper we only consider the inviscid portion of the flow. The upstream 
disturbance produces a linear perturbation to the two-dimensional base flow {Uo(x, y), 
V,(x, y), O }  in the vicinity of the leading edge where x = O( l ) ,  so that the relevant 
solution expands like 

(2.2) 

p = Po+€po+€2p1+ ..., (2.3) 

u = {U0, v,,o >+E{UO,11O,WO}+E2{U1,0l,Wl}+ ..., 

in this region. The first-order solutions {uo, v0, wo} were obtained by application of the 
generalized rapid distortion theory of Goldstein (1978), which shows that the 
spanwise velocity has a weak logarithmic singularity at  the surface of the plate that 
can only be eliminated by viscous effects (see also Lighthill 1956). The expansions 
(2.2) and (2.3) eventually break down far downstream from the leading edge because, 
as shown in GLC, the terms e2u1 and e2w1 become of the same order as euo and ewe, 
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FIGURE 1. Flow configuration 

respectively when -EX In y = O( 1) .  A new solution must therefore be constructed for 
this region which was called the blending layer by GLC (but might better be referred 
to as a nonlinear vorticity layer). Within it the scaled variables 

z = ex/u, (2.4) 

and = -ulny, (2.5) 

are order one, where 
u E - l/ln 6, 

and A8 is the thickness of the viscous boundary layer below the blending layer. For 
convenience 

and 7 are used as independent variables. The relevant solution is of the form 

E = zy, (2.7) 

u =  1 S E  ~o(E,Z)+~~al(E,2)+... , (2.8) [ 7 1 
(2.9) 

8 

CT 
21 = -e-~l/" [Tv,(L$, 4 + uv,(C, 4 + . ' .I> 

(2.10) 

(2.1 1 )  

E 

u w = - (TW,(C,  z )  + a W l ( g ,  2) + . . .I, 

p = e2d(z)+- ( -e-+ [r2%(5? 4 + q T 4 ( 5 > Z )  + . . .I, 2 u  

where d(z) is an arbitrary function of z which comes from the linear rapid distortion 
theory solution. 

The leading-order spanwise velocity a0 is governed by the inviscid Burgers' 
equation, whose solution becomes singular at  a finite streamwise position 5 = E,, 
which corresponds to the curve cB = -exln y shown in figure 2 where the inviscid 
singularity structure is pictured. Downstream of this curve the spanwise velocity can 
only be made single valued if it is allowed to be discontinuous across a plane 
extending downstream of this curve (which in the numerical example of GLC was the 
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Line of singularities7 
-sxlny = 6, ,/ 

Surface boundary layer ’ O(4 
........................................... 

FIGURE 2 .  Singularity structure of the nonlinear inviscid flow of GLC. 

symmetry plane z = 0). The breakdown of the inviscid Burgers’ equation solution 
leads to an infinite singularity in the leading-order normal velocity v0. A new local 
solution was constructed by GLC to eliminate this infinite singularity. 

In the singularity-line region, where the inner variables 

c= r (5-5s) /a5~--n(~~aa/r)  (2.12) 

and z = (r/a/Is tS)i 2 (2.13) 

are order one, and /?, is a constant that  is fixed by the form of the upstream distortion 
(see (4.7) of GLC), the solution is of the form 

u = 1 + O ( € ) ,  (2.14) 

(2.15) 

(2.16) 

(2.17) 

The local normal velocity uI is now finite but the associated spanwise velocity wI 
remains discontinuous across Z = 0. The relevant composite solution for these two 
nonlinear inviscid regions is therefore also bounded but is still discontinuous across 
an appropriate plane extending downstream from the initial singularity line (which, 
as in the numerical example of GLC, is taken to be the symmetry plane z = 0). 

3. Elimination of the spanwise velocity discontinuity 
In  this section we construct the local asymptotic solution that eliminates the 

spanwise velocity discontinuity across the z = 0 symmetry plane in the blending- 
layer and singularity-line solutions of GLC. This discontinuity exists both within and 
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FIGURE 3. Asymptotic structure of the inviscid solution constructed to eliminate the residual 
velocity discontinuity in the solution of GLC. 

downstream of the singularity-line region and it is expedient to deal with both these 
regions simultaneously. We therefore form a composite solution, say w,(z, r , ~ ,  z ) ,  using 
the blending-layer solution (2.10), the singularity line solution (2.16) and its outer 
limit given by equation (4.30) of GLC as 

where 

This result is limited to the case, corresponding to the numerical example of GLC, 
where w has odd symmetry about z = 0. Here 0’ denotes the limiting values as z+O 
through positive/negative z and we have taken p = 0 in the singularity-line region 
solution (4.28) of GLC. The composite solution (3.1) and (3.2) is uniformly valid in 
both the singularity-line region and the downstream blending-layer region. It 
therefore reduces to the blending-layer solution when ([--&) = O(1) (from (4.30) of 
GLC) and the singularity-line solution when %= O(1) (from (4.5)-(4.9) of GLC). 
Figure 2, along with (2.4), (2.5) and (2.6), shows that the height of the velocity 
discontinuity is O(h&‘&’”)) and is very small compared to the spanwise lengthscales, 
h and A$, of the blending-layer and singularity-line region solutions, respectively. 
We can therefore find a region where Ax is small compared to A but still large 
compared to the height hS(6s’”) of the symmetry plane velocity discontinuity. The 
spanwise flow entering this region will be given by w,(E, v , O * )  at large values of the 
appropriately scaled spanwise variable as illustrated in figure 3. 

The transverse variations of the flow in this region will, of course, be much more 
rapid than those in the blending layer and singularity line region and the streamwise, 
or 5, variations (which just balance the transverse variations in these regions) will, 
therefore, be negligible there. The relevant flow will then be governed by the two- 
dimensional vorticity equation, which can be integrated in the usual way to show 
that the relevant two-dimensional streamfunction +: 

(3.3) 

(3.4) 
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satisfies v;$ = W($Q> 
where V$ denotes the transverse Laplacian 

(3.5) 

H i s  an arbitrary function of $ (and possibly of Z, which enters only parametrically), 
and the prime denotes differentiation with respect to $. 

The solution to this equation must, of course, match with (3.1) a t  large values of 
the appropriately scaled spanwise variable and it therefore follows (upon dropping 
the irrelevant dependence on Z) that 

(3.7) 
E 

a 
$+~-yw,( -u lny) ;  z >< 0, 

as this variable becomes large. Then $ will become z-independent and therefore 
satisfy 

as the scaled z becomes large. This can easily be integrated to show that 

a2$/ay2 --f ; H ,  (3.8) 

Then since y is small (i.e. - a l n y  = O(1)) it follows that we must take 

(3.9) 

(3.10) 

and therefore that to lowest order in cr 

E 2 ~ c ( - a l n ( ~ 0 - / e ) ) w ~ ( - r l n ( $ a / € ) )  

r $ 
v2+=--  9 (3.11) T 

where the prime now denotes differentiation with respect to the indicated argument. 
Equation (3.7) suggests that we introduce the new dependent variable 3 by 

€ 

0- 
$ = -e-Tlg$. (3.12) 

Since $ depends on In y the form of the two-dimensional vorticity equation suggests 
that it will be a function of lnz so that it is appropriate to take 7 and 

6' = i l n  ( y / ~ ) ~ ,  (3.13) 

as new independent variables. Then $(2, T/, 0) satisfies 

and the crossflow velocity components v and w are determined by 

(3.15) 

and w = 5[$+$s-qFJ. (3.16) 
a 
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The matching condition (3.7) requires that 

$++s,(q) as z - tO(1) .  (3.17) 

As z moves progressively closer to zero three limiting forms of (3.14) must be 

(3.18) 

considered. The first of these is encountered when 

o < $=-re = o(1). 

In  this region, which we denote by region I (see figure 3), (3.14) reduces to 

ih+ 3, = %(v) wl)/& 
which is easily solved to obtain 

g2 = G(7 - a) +a:(?), 

(3.19) 

(3.20) 

where G is an, as yet, arbitrary function of r] - g. It now follows from (3.15) and (3.16) 
that  

(3.21) 

B 

r w = f - [G(v-g)+s: (~ ,~)] ; ;  z >< 0, (3.22) 

assuming, as in the numerical example of GLC, that in, < 0 for z > 0, i.e. that the flow 
(at infinity) is into the symmetry plane. It is also easy to show, from the spanwise 
momentum equation, that the pressure, p ,  is given by 

p = - i ( e / ~ ) ~ G ( r ] - Q ) .  (3.23) 

Since 8-t 0 as z -+ 0 with y (or r ] )  fixed, we can now make w --f 0 as z + 0 by choosing 

G ( 7 )  E -G$(Y). 

Notice that (2.5), (3.13) and (3.18) show that 
- 

7 - 0  = -rlnlzl, 

(3.24) 

(3.25) 

and (2.12) and (3.2) imply that 

a: = CB; t s  r?mE Of), (3.26) 

for q < tS/z. It therefore follows that 

G(7 - g) -+pi tS r2 In IzI @:(ln IzI, O'), (3.27) 

as - r ln 121 + 0 and consequently that 

G(q-G)+O as -rln(z(+O, (3.28) 

which, together with (3.20) shows that the matching condition (3.17) is, in fact, 
satisfied with this choice of G. However, it  follows from (3.21) that v now becomes 
infinite as e + O .  I n  fact (3.20)-(3.24) show that 

3" --f 2s,(7) g, (3.29) 
w + ee-g'u[2s,(7) rn;(q)]1/2@, (3.30) 

w+ T ( e / u ) [ 2 ~ , ( v ) i i j ~ ( r ) ] " ~ ;  220, (3.31) 

and p + ; ( € / r ) ~  (s:-2m,w;8), (3.32) 

as @-to. This means that we have to introduce a new intermediate region closer in 
toward the symmetry plane. 

18 FLM 248 
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Since the next significantly different scaling occurs when 

e = o(i), (3.33) 

we take this to be the appropriate scaling in this region, which we now denote as I1 
(see figure 3). Then it follows from (3.14) and (3.29) that in this region 9 will be of 
the form 

where Y is 0(1) and satisfies 
3 = &(s, a;); q e ) ,  

( I  +eze) (Ye, + Yo) = - I /  Y, 

(3.34) 

(3.35) 

and it follows from (3.15) and (3.16) that the crossflow velocity components are now 
given by 

(3.36) 

(3.37) 6 e -  --I1 and w = k7e (w,w,)H Ye; 2 0. 
CTI 

Matching with (3.29) requires that 

~ + ~ ( - 2 8 ) t  as e+-w; 220, (3.38) 

and since (3.35) reduces to 

as 8+ + 00 it follows that 
ezo( Yoe+ Yo) = - I/Y, (3.39) 

Y+ T e-o(20); as B + G O ;  z 2 0. (3.40) 

The appropriate signs in (3.40) have been determined by noting that Y cannot 
change sign in - co < 8 < 00, that the negative of any solution (3.35) is also a 
solution, and that 8 is an even function of z .  

However, (3.37) and (3.40) now show that v still becomes infinite (i.e. it behaves 
like @) as 8-t co. We therefore have to introduce a third region, say 111, that lies even 
closer to the symmetry plane. The next significantly different scaling occurs when 

0 < -e= 0 ( 1 ) ,  (3.41) 

and matching with (3.34) and (3.40) suggests that the dependent variable will now 
be of the form 

$ = e W ( q ,  @, (3.42) 

and that Y will then be 0 ( 1 )  and satisfy the matching condition 

Y+ f (~m,m:)+(-g)+ as S + O ;  z 3 0. (3.43) 

Ya+/ae = --gc(?-e) a:(?-@ (3.44) 

Substituting the new variables (3.41) and (3.42) into (3.14) shows that !? is 
determined by 

and it follows from (3.15) and (3.16) that the crossflow velocity components are now 
given by 

- 6  - 
Q 

v =  + - Y ;  (3.45) 

w = --Ee~/~[!Pg+ Y,,]. (3.46) 
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The solution to (3.44) that satisfies the matching condition (3.43) is given by 

Y =  T [w37-$)-m37)]f;  z 2 0. (3.47) 

Then (3.45) and (3.46) show that the crossflow velocity components now both remain 
bounded as g + -  co, and consequently as z+O,  and since (3.13) and (3.18) show that 

e8/ff = Izl/y, (3.48) 
- 

they are both also continuous there. 

4. Discussion 
We have now shown that a completely smooth inviscid solution can be found for 

the blending-layer, or nonlinear vorticity-layer, region by piecing together 
appropriate local solutions. In the main part of the flow the crossflow velocity is 
determined by the inviscid Burgers’ equation independently of the other velocity 
components, i.e. it is decoupled from the other velocity components, and the 
horizontal pressure gradients are negligible. The infinite singularity in the vertical 
velocity that resulted from the initial breakdown of the inviscid Burgers’ equation 
solution was eliminated by the singularity line solution in GLC. The spanwise and 
vertical velocities were fully coupled but the horizontal pressure gradients were still 
negligible in this solution. This left the finite discontinuities in the spanwise velocity 
which are completely eliminated in the present paper. First, there is an outer region, 
referred to as I in figure 3, in which the flow perturbation is primarily in the spanwise 
direction and predominantly one-dimensional. In this region, where 7 = O( 1) and 
IzI % y or, more precisely, -a ln  IzJ < 7 = - r lny ,  a strong adverse pressure gradient 
is set up in the spanwise direction to reduce the spanwise velocity to zero and thereby 
eliminate the spanwise velocity discontinuity. We computed the scaled pressure in 
region I from (3.2), (3.23), (3.24), (3.26) and the solutions for a0 and wI given in GLC. 
Numerical values had to be specified for the parameters r, &,, Es and Z appearing in 
these solutions. These were chosen, as far as possible, to correspond to the numerical 
example of GLC. The result is plotted in figure 4 and the parameter values are given 
in the caption. Figure 4 shows that the pressure increases monotonically from zero 
as the flow penetrates region I. This caused the vertical velocity to become 
unbounded as the symmetry plane was approached and a new inner scaling had to 
be introduced corresponding to region I1 in figure 3. 

The region I vertical velocity is exponentially small compared with the spanwise 
velocity while the reverse is true in region 111. In fact the velocity components in 
these regions are related by 

w’(q,8) = T w y y - 8 ,  -G) ,  
WI(7 ,  8) = T P ( q - 8 ,  -8), 

(4.1) 

(4.2) 

where the superscripts refer to the solutions in regions I and 111. The (y,z)-plane 
streamlines are therefore essentially horizontal and vertical straight lines within 
regions I and 111, respectively so there is no need to present them graphically. 
However, the spanwise and vertical velocities are of the same order in region 11, 
where 7 = O(1) and z = O(y), and the flow is turned from the spanwise direction to  
the vertical. To show this turning we numerically solved (3.35), subject to the 
boundary conditions (3.38) and (3.40), and combined the results with (3.34) and 
(3.14) to obtain CT$/B as a function of y and z .  The values for the parameters are the 

18-2 
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FIGURE 4. Variation of the scaled pressure in region I. Computed with parameter values chosen 
as = 0.1, &, = $, tS = 1, z = 2. 

0 0.0005 O.Ool0 0.0015 0.0020 
L 

FIQURE 5. Contours of (u /E )  @ x lo4 in region 11. Same parameter values as in figure 4. 

same as those used to compute the pressure in figure 4. The contours of this scaled 
streamfunction are plotted in figure 5. This streamline pattern clearly shows that the 
flow is turned from the spanwise to the vertical direction. The turning is, however, 
incomplete and, as a result, the vertical velocity develops another singularity closer 
in toward the symmetry plane. This singularity is eliminated by introducing a third 
asymptotic region in which 7 = O(1) and 1x1 -4 y (or -crln IzI > 7). This is referred to 
as region I11 in figure 3. Here the vertical velocity become large and the flow has a 
vertical jet-like structure. 

Since the inviscid flow solution is completely non-singular, any singularity in the 
problem would arise due to a breakdown of the viscous boundary-layer flow. In fact, 
while this flow structure is acceptable from a purely inviscid point of view, it will not 
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always be realizable in practice because the strong spanwise deceleration of the flow 
in region I will usually separate the boundary layer at the surface of the plate if that 
layer remains laminar (see also the discussion at  the end of GLC). 

The authors would like to thank Professor A. F. Messiter for helpful discussions 
and for pointing out the relations (4.1) and (4.2). 
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